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The Need for Integrated Modeling
From embedded devices to future exascale computers, increased parallelism in both the number of processing units and
nodes will create unprecedented challenges to achieve the expected levels of application performance. System power
consumption will be a major consideration. For large-scale systems, failures proportional to the size of the system will
impair system usability. To address these challenges, modeling methods must evolve and consider the combined effects of
performance, power, and resilience (PPR). Further, modeling methods must be rapid and accurate to evaluate the dynamic
tradeoffs posed by PPR in large-scale systems.

Many current modeling methods employ analytical models or architectural, highly-accurate simulators. Analytical
models tend to focus on a specific dimension of performance, power, and resilience but often miss the combined interde-
pendent effects. Highly accurate simulators, on the other hand, are not scalable. Further, the overhead imposed by many
modeling tools is too high to be used at runtime. Thus, we need more efficient and unified modeling frameworks, which
will enable runtime systems to find, in real-time, an efficient operating point in terms of PPR for an application.

In this paper, we propose an infrastructure for modeling parallelism and its combined effects on performance, power,
and resilience. Managing and optimizing parallelism dynamically is at the core of meeting the challenging requirements
of PPR imposed by future systems. The inherent parallelism of scientific applications varies across execution phases [13].
Matching the degree of parallelism (parallel configuration) for an application has complex PPR implications [3,4,10,11].
Our goal is to develop a model-driven approach based on hardware resource utilization that will guide the selection and
adaptation of parallel configurations.

Adaptive Parallelism Framework
We base our proposed modeling methodology on two observations. First, performance, power, and resilience have first-
order or second-order correlations with hardware component utilization. From a performance perspective, our work
reveals, for example, that the number of accesses to the memory hierarchy and the number of executed instructions serve
as strong indicators of performance with various levels of parallelism [10, 11, 22, 23]. Power consumption is related to
hardware usage intensity [7, 8, 11, 15]. Resilience is related to both application execution time and number of hardware
accesses. Given hardware failure rates for specific hardware components, longer application execution times and more
hardware accesses expose the application to more random occurrences of hardware failures (including both hard and
soft errors). We introduce a new metric, the vulnerability factor (VF), which is defined as a function of execution time,
number of hardware accesses driven by application characteristics, and component failure rate, to quantify application
vulnerability. Thus, resilience, like performance and power, is related to hardware component utilization.

Second, given a parallel region, PPR and thread-level parallelism are strongly correlated statistically. Thus, based on
hardware components utilization collected from a few samples of parallel configurations, we can predict PPR for other
parallel configurations. We call these representative samples seminal configurations.

Based on these observations, we can construct an integrated, PPR model in two phases: offline model training and online
model selection. Model training uses machine learning to determine the hardware component utilization information that
is most correlated with PPR. The information should be measurable with lightweight hardware counters. Also, seminal
configurations are chosen empirically. Empirical observations reveal that PPR data with different levels of parallelism can
be clustered into different groups. The parallel configuration that is the closest to the center of each group is chosen as
a seminal configuration. During offline training, we build a series of PPR models to capture diverse hardware features
and application characteristics. Using a diverse set of applications and benchmarks during training is key to producing
accurate models. During online model selection, we use a few sample iterations of parallel regions to execute with seminal
configurations and collect hardware component utilization information in order to identify the model to use.
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Based on the above modeling methodology, we can accurately predict PPR at runtime for any untested parallelism
configuration with low overhead. We enable accurate on-line modeling by building the model offline using a diverse
set of application characteristics. Using the resulting models, a runtime system can use high-level policies that indicate
the desired levels of performance, power, and resilience. For example, minimizing the vulnerability factor at a marginal
performance and power cost; and achieving the best performance and resilience within a power cap. Figure 1 provides an
overview of our framework’s model construction and deployment.

Our previous investigations show that this methodology can predict performance and power with high accuracy on
many-core platforms. These results are encouraging and we plan to integrate our proposed resiliency model into this
framework. Looking forward, future milestones include the creation of models for emerging heterogenous memory ar-
chitectures (multiple levels of memory to provide bandwidth and capacity requirements of future systems), analyzing the
effects of data layout and memory parallelism on PPR, and developing new models for heterogenous computing platforms.

Figure 1: The general framework for adaptive
parallelism with integrated PPR modeling

Related Work
Performance, power, and resilience modeling and simulation have been
studied before, but mostly in isolation. Some related work employs an-
alytical or empirical models to achieve joint optimization of power and
performance. For example, Green Queue [17, 24, 25], Adagio [18, 19],
and Workload Consolidation [9, 12]. Other work uses detailed hard-
ware analysis for hardware-oriented resilience modeling. For example,
Mukherjee et al. [16] define architectural vulnerability factor (AVF) as
the probability that a fault in a particular structure will result an er-
ror. Biswas et al. [1] show how to compute the AVF of address-based
processor structures based on a detailed analysis of architecturally cor-
rect execution. Sridharan and Kaeli [20, 21] introduce a new metric to
capture the architecture-level fault masking inherent in a program. In
addition, fault injection has been widely used to understand application
vulnerability [2, 5, 6, 14, 26].

Evaluation of Proposed Methodology
Challenges. Future systems demand modeling and simulation capa-
bilities to help us understand the complex and combined interactions
between performance, power, and resilience. Further, modeling and simulation techniques should provide rapid and dy-
namic evaluation of tradeoffs between them. Our proposed modeling infrastructure is designed to provide lightweight and
accurate PPR predictions based on adaptive parallelism. It can be used by runtime systems to manage system resources
for a specific set of objectives based on thread-level and memory-level parallelism.
Maturity. Our previous investigations show that our proposed methodology can provide accurate and lightweight mod-
eling of performance and power for OpenMP parallel regions on several multicore architectures [10–12, 22, 23]. We have
successfully applied machine-learning techniques to this area to address the challenges associated with an extremely large
space of optimizations. This infrastructure provides a strong basis for integrating modeling of different objective func-
tions. Adding modeling capabilities for resilience and reliability along with processor and memory heterogeneity will
undoubtedly present significant challenges.
Uniqueness. A key feature of our modeling methodology is our focus on parallelism, which is the central consideration in
managing the tradeoffs between power, performance, and resilience. In addition, we will use machine-learning techniques
to create multi-dimensional PPR models. The goal of our modeling infrastructure is to guide a runtime system to determine
the right level of concurrency to achieve desired optimization objectives.
Novelty. Our modeling methodology reveals statistical correlation between measurable hardware events, application
characteristics, and PPR. The unique set of features and opportunities provided by our models provide fast exploration of
PPR to achieve multi-dimensional optimization.
Applicability. The proposed PPR models have been deployed in an OpenMP runtime to optimize performance and energy
efficiency by using adaptive parallelism. Our thesis is that this approach can be successfully applied to other areas such
as modeling of emerging memory systems.
Effort. Key milestones include developing models of resilience and memory-level parallelism and investigating their
interactions with other objectives such as power and performance. In addition, we need to investigate the accuracy and
overhead of our modeling methodology on a variety of hardware resources including homogenous and heterogeneous
processor architectures, and emerging heterogeneous memory architectures (multi-level memories).
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